Simulasi Docking Senyawa Napthoquinones Umbi Bawang Tiwai (Eleutherine americana Merr.) terhadap Bakteri Mycobacterium tuberculosis

Docking Simulation of Umbi Bawang Tiwai Napthoquinones Compound (Eleutherine americana Merr.) against Mycobacterium tuberculosis bacteria

Authors

  • Irmayanti Irwan Laboratorium Penelitian dan Pengembangan Kefarmasian ?Farmaka Tropis? Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia
  • Hajrah Hajrah Laboratorium Penelitian dan Pengembangan Kefarmasian ?Farmaka Tropis? Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia
  • Yurika Sastyarina Laboratorium Penelitian dan Pengembangan Kefarmasian ?Farmaka Tropis? Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia

DOI:

https://doi.org/10.25026/mpc.v13i1.449

Abstract

Bawang tiwai (Eleutherine americana Mirr.) is a plant empirically used as an antituberculosis. This plant is thought to have potential because having a compound naphthoquinone potential antituberculosis seen from the average value of the MIC between 206,6 and 12.5 ?M. This study aims to examine a model of the interaction of compounds derived naphthoquinone of bawang tiwai against the side of the fastener from the bacterium Mycobacterium tuberculosis. The method used is docking molecular using AutoDock tools, and Biovia 2020, the prediction of physicochemical which refers to the law of the five Lipinski of using pkCSM online tool. The receptor proteins used were InhA (PDB: 2X23) and the test ligands of elecanacin, eleutherin, eleutherol, and isoeleutherin. The results show that the four compounds comply with Lipinski's five laws, and the docking analysis data is the value of free bond energy (?G) of the four compounds, respectively, -5.82, -4.80, - 5.06, -5.52. The ?G value is below the natural ligand, namely -8, 19, and no hydrogen bonding interaction. It can be concluded that the four naphthoquinone derivative compounds in bawang tiwai lack the potential to bind to the binding site of the Mycobacterium tuberculosis bacteria.

References

[1] Retno Asti Werdhani. 2002. Patofisiologi, Diagnosis, Dan Klafisikasi Tuberkulosis. Jakarta: Departemen Ilmu Kedokteran Komunitas, Okupasi, Dan Keluarga. Fkui
[2] World Health Organization. 2019. Are Updated Every Year For The Tuberculosis. 2020.
[3] Kemenkes Ri. 2019. Profil Kesehatan Indonesia 2018 [Indonesia Health Profile 2018]
[4] A. Anggoro. 2015. Potensi Daun Pepaya ( Carica Papaya Sp .) Sebagai Obat Anti Tuberkulosis. Agromed Unila, Vol. 2, No. 2, Pp. 86?89
[5] R. Ruswanto. 2015. Molecular Docking Empat Turunan Isonicotinohydrazide Pada Mycobacterium Tuberculosis Enoyl-Acyl Carrier Protein Reductase (Inha). J. Kesehat. Bakti Tunas Husada J. Ilmu-Ilmu Keperawatan, Anal. Kesehat. Dan Farm., Vol. 13, No. 1, Pp. 135?141, 2015, Doi: 10.36465/Jkbth.V13i1.25.
[6] Mara Imam Taufiq Sinegar. 2015. Mekanisme Resistensi Isoniazid &Mutasi Gen Katg Ser315thr (G944c) Mycobacterium Tuberculosis Sebagai Penyebab Tersering Resistensi Isoniazid. Jmj, Vol. 3, No. 2
[7] T. T. Irianti. 2016. Mengenal Anti-Tuberkulosis. Yogyakarta: Cv. Grafika Indah
[8] Ervizal A.M. Zuhud. 2009. Potensi Hutan Tropika Indonesia Sebagai Penyangga Bahan Obat Alam Untuk Kesehatan Bangsa. J. Bahan Alam Indones., Vol. 6, No. 6, Pp. 227?232
[9] S. Aslamiah. 2016. Uji Coba Hidriponik Tanaman Kencur dan Bawang Dayak ( The Trial Of Hydroponic On Kencur And Dayak?s Onion ),? J. Daun, Vol. 3, No. 1, Pp. 46?53
[10] P. C. B. Halicki Et Al. 2018. Naphthoquinone Derivatives As Scaffold To Develop New Drugs For Tuberculosis Treatment. Front. Microbiol., Vol. 9, No. Apr, Pp. 1?7, 2018, Doi: 10.3389/Fmicb.2018.00673.
[11] W. Paengsri, V. S. Lee, W. L. Chong, H. A. Wahab, And A. Baramee. 2012. Synthesis, Antituberculosis Activity And Molecular Docking Studies For Novel Naphthoquinone Derivatives. Int. J. Biol. Chem., Vol. 6, No. 3, Pp. 69?88, 2012, Doi: 10.3923/Ijbc.2012.69.88.
[12] W. J. Geldenhuys, K. E. Gaasch, M. Watson, D. D. Allen, And C. J. Van Der Schyf. 2006. Optimizing The Use Of Open-Source Software Applications In Drug Discovery. Drug Discov. Today, Vol. 11, No. 3?4, Pp. 127?132, 2006, Doi: 10.1016/S1359-6446(05)03692-5.
[13] D. Kesuma, S. Siswandono, B. T. Purwanto, And S. Hardjono. 2018. Uji In Silico Aktivitas Sitotoksik Dan Toksisitas Senyawa Turunan N-(Benzoil)-N?- Feniltiourea Sebagai Calon Obat Antikanker. Jpscr J. Pharm. Sci. Clin. Res., Vol. 3, No. 1, P. 1, 2018, Doi: 10.20961/Jpscr.V3i1.16266.
[14] M. B. O. Rastini, N. K. M. Giantari, K. D. Adnyani, And N. P. L. Laksmiani,. 2019. Molecular Docking Aktivitas Antikanker Dari Kuersetin Terhadap Kanker Payudara Secara In Silico. J. Kim., P. 180, 2019, Doi: 10.24843/Jchem.2019.V13.I02.P09.
[15] H. Noviardi And F. Fachrurrazie. 2015. Potensi Senyawa Bullatalisin Sebagai Inhibitor Protein Leukotrien A4 Hidrolase Pada Kanker Kolon Secara In Silico. Fitofarmaka J. Ilm. Farm., Vol. 5, No. 2, Pp. 65?73, 2015, Doi: 10.33751/Jf.V5i2.410.
[16] N. D. H. Ruswanto, Winda Trisna Wulandari, Sarah Sri Rahayu, Richa Mardaningrum. 2019. Pharmacoscript Volume 2 No. 2 Bulan Tahun Terbit,? Pharmacoscript, Vol. 2, No. 2, Pp. 1?12

Downloads

Published

2021-04-10

How to Cite

Irwan, I. ., Hajrah, H., & Sastyarina, Y. . (2021). Simulasi Docking Senyawa Napthoquinones Umbi Bawang Tiwai (Eleutherine americana Merr.) terhadap Bakteri Mycobacterium tuberculosis: Docking Simulation of Umbi Bawang Tiwai Napthoquinones Compound (Eleutherine americana Merr.) against Mycobacterium tuberculosis bacteria. Proceeding of Mulawarman Pharmaceuticals Conferences, 13(1), 92–98. https://doi.org/10.25026/mpc.v13i1.449

Most read articles by the same author(s)

1 2 3 4 > >>