Penerapan Ionic Liquid (ILs) Sebagai Pelarut Alternatif Untuk Mengekstraksi Komponen Aktif Dari Tumbuhan Obat: Review

  • Islamudin Ahmad
  • Abdul Mun’im
Keywords: Ionic Liquids (ILs), metode ekstraksi, toksisitas, dampak lingkungan

Abstract

Selama dekade terakhir ionic liquids (ILs) merupakan pelarut alternatif baru dengan campuran (kation dan anion) memiliki sifat fisik dan sifat larutan yang spesifik dan telah terbukti sebagai substituen menjanjikan dari pelarut organik konvensional yang mudah terbakar, mudah menguap, dan beracun dalam berbagai proses. Dalam literatur dan penelitian, senyawa ini sering disebut pelarut ramah lingkungan. Namun, dalam beberapa tahun terakhir persepsi kehijauan berubah secara dramatis sebagai komunitas saintis yang mulai proaktif menilai resiko aplikasi bahan kimia berdasarkan pada seluruh siklus kehidupan. Aplikasi ILs dalam memisahkan komponen aktif dari tumbuhan obat dapat dilakukan dengan dibantu berbagai metode ekstraksi antara lain; heat refluks extraction (IL-HRE),  microwave-assisted extraction (IL-MAE), ultrasound-assisted extraction (IL-UAE), IL-assisted ultrahigh pressure extraction (IL-UPE), supercritical fluid extraction (IL-SFE) dan negative-pressure cavitation-assisted extraction (IL-NPCE). Beberapa komponen aktif dari tumbuhan obat telah di ekstraksi menggunakan pelarut ionic liquid (ILs) antara lain; piperine, caffein, kuersetin, asam gallat, apigenin, stilbel, koumarin, flavanoid, ginsenosida (saponin), artemisin, dan lain-lain. Ulasan terkini memberikan gambaran komprehensif mengenai ILs sebagai pelarut alternatif  dari pelarut organik konvensional untuk ekstraksi senyawa metabolit sekunder dari matriks tumbuhan obat. Faktor-faktor penting yang mempengaruhi efisiensi ekstraksi, toksisitas, dan mekanisme ekstraksi menggunakan ILs dengan penekanan khusus pada potensi dampak lingkungan dan secara inheren aman bagi peneliti.

References

Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghagor, K., Norulaini, N.A.N., & Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. http://doi.org/10.1016/j.jfoodeng.2013.01.014
Bogdanov, M. G., Iliev, B., & Kantlehner, W. (2009). The Residual Volume Approach II : Simple Prediction of Ionic Conductivity of Ionic Liquids. Z. Naturforsch B, 64, 756–764.
Bogdanov, M.G., Petkova, D., Hristeva, S., & Svinyarov, I. (2010). New Guanidinium-based Room-temperature Ionic Liquids . Substituent and Anion Effect on Density and Solubility in Water. Z. Naturforsch B, 65b, 37–48.
Bogdanov, M.G., Svinyarov, I., Keremedchieva, R., & Sidjimov, A. (2012). Ionic liquid-supported solid – liquid extraction of bioactive alkaloids. I . New HPLC method for quantitative determination of glaucine in Glaucium flavum. Separation and Purification Technology, 97, 221–227. http://doi.org/10.1016/j.seppur.2012.02.001
Bubalo, M.C., Radošević, K., Redovniković, I.R., Halambek, J., & Srček, V.G. (2014). A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicology and Environmental Safety, 99, 1–12. http://doi.org/10.1016/j.ecoenv.2013.10.019
Bucar, F., Wube, A., & Schmid, M. (2013). Natural product isolation – how to get from biological material to pure compounds. Natural Product Reports, 30(4), 525. http://doi.org/10.1039/c3np20106f
Cao, X., Ye, X., Lu, Y., Yu, Y., & Mo, W. (2009). Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Analytica Chimica Acta, 640(1-2), 47–51. http://doi.org/10.1016/j.aca.2009.03.029
Chemat, F., & Vian, M. A. (2014). Green Chemistry and Sustainable Technology: Alternative Solvents for Natural Products Extraction. Heildelberg, New York, Dordrecht, London: Springer US.
Choi, S.A., Lee, J.S., Oh, Y.K., Jeong, M.J., Kim, S.W., & Park, J.Y. (2014). Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. Algal Research, 3(1), 44–48. http://doi.org/10.1016/j.algal.2013.11.013
Choi, S., Lee, J., Oh, Y., Jeong, M., Wook, S., & Park, J. (2014). Lipid extraction from
Chlorella vulgaris by molten-salt/ionic-liquid mixtures. ALGAL, 3, 44–48. http://doi.org/10.1016/j.algal.2013.11.013
Claudio, A.F.M., Ferreira, A.M., Freire, M.G., & Coutinho, J.A.P. (2010). Enhanced Extraction of Caffeine from Guarana Seeds using Aqueous Solutions of Ionic Liquids. Green Chem., 12(9), 1481–1675. Retrieved from http://xlink.rsc.org/?DOI=C2GC36682G
Cragg, G.M., & Newman, D.J. (2013). Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta, 1830, 3670–3695.
Ding, X., Li, L., Wang, Y., Chen, J., Huang, Y., & Xu, K. (2014). Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix Peucedani. Journal of Separation Science, 37(23), 3539–3547. http://doi.org/10.1002/jssc.201400828
Du, F.Y., Xiao, X.H., & Li, G.K. (2007). Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni cuspidati. Journal of Chromatography A, 1140(1-2), 56–62. http://doi.org/10.1016/j.chroma.2006.11.049
Du, F.Y., Xiao, X.H., & Li, G.K. (2011). Ionic liquid aqueous solvent-based microwave-assisted hydrolysis for the extraction and HPLC determination of myricetin and quercetin from Myrica rubra leaves. Biomedical Chromatography, 25(4), 472–478. http://doi.org/10.1002/bmc.1470
Dupont, J. (2004). On the Solid, Liquid and Solution Structural Organization of Imidazolium Ionic Liquids. J.Braz.Chem.Soc, 15(3), 341–350.
Espino, M., Fernández, M.D.L.Á., Gomez, F.J.V, & Silva, M.F. (2015). Natural Designer Solvents for Greening Analytical Chemistry. Trends in Analytical Chemistry. http://doi.org/10.1016/j.trac.2015.11.006
Fan, J., Cao, J., Zhang, X., Huang, J., Kong, T., & Tong, S. (2012). Optimization of ionic liquid based ultrasonic assisted extraction of puerarin from Radix Puerariae lobatae by response surface methodology. Food Chemistry, 135(4), 2299–2306. http://doi.org/10.1016/j.foodchem.2012.07.038
Garcia, H., Ferreira, R., Petkovic, M., Ferguson, J.L., Leitão, M.C., Gunaratne, H.Q.N., Seddon, K.R., Rebelo, L.P.N., & Pereira, C.S. (2010). Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chemistry, 12(3), 367. http://doi.org/10.1039/b922553f
Greaves, T.L., & Drummond, C.J. (2013). Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids. Chem. Soc. Rev., 42(3), 1096–1120. http://doi.org/10.1039/C2CS35339C
Gross, A.S., Bell, A.T., & Chu, J.-W. (2012). Thermodynamics of Cellulose Solvation in Water and in the Ionic Liquid 1-butyl-3-methylimidazolim chloride. Physical Chemistry Chemical Physics, 14(23), 8425. http://doi.org/10.1039/c2cp40417f
Guolin, H., Jeffrey, S., Kai, Z., & Xiaolan, H. (2012). Application of ionic liquids in the microwave-assisted extraction of pectin from lemon peels. Journal of Analytical Methods in Chemistry, 1(1), 1012–1018. http://doi.org/10.1155/2012/302059
Hallett, J.P., & Welton, T. (2011). Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chemical Reviews, 111(5), 3508–3576. http://doi.org/10.1021/cr1003248
Han, D., & Row, K.H. (2011). Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. Journal of the Science of Food and Agriculture, 91(15), 2888–2892. http://doi.org/10.1002/jsfa.4553
Hanani, E. (2014). Analisis Fitokimia. Jakarta: Penerbit Buku Keokteran, EGC.
Harborne, J.B. (1987). Metode Fitokimia. Bandung: Penerbit ITB.
Ho, T.D., Zhang, C., Hantao, L.W., & Anderson, J.L. (2013). Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives. Analytical Chemistry.
Jacquemin, J., Husson, P., Padua, A.A.H., & Majer, V. (2006). Density and viscosity of several pure and water-saturated ionic liquids. Green Chem., 8(2), 172–180. http://doi.org/10.1039/B513231B
Jessop, P.G., Jessop, D.A., Fu, D., & Phan, L. (2012). Solvatochromic parameters for solvents of interest in green chemistry. Green Chemistry, 14(5), 1245. http://doi.org/10.1039/c2gc16670d
Khoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(3), 2328–2375. http://doi.org/10.3390/molecules18022328
Landry, T.D., Brooks, K., Poche, D., & Woolhiser, M. (2005). Acute toxicity profile of 1-butyl-3-methylimidazolium chloride. Bulletin of Environmental Contamination and Toxicology, 74(3), 559–565. http://doi.org/10.1007/s00128-005-0620-4
Li, Z., Li, C., Chi, Y., Wang, A., Zhang, Z., Li, H., & Liu, Q. (2012). Extraction Process of Dibenzothiophene with New Distillable Amine- Based Protic Ionic Liquids. Energy & Fules, 26, 3723–3727.
Liu, T., Sui, X., Zhang, R., Yang, L., Zu, Y., & Zhang, L. (2011). Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid , rosmarinic acid and essential oil from Rosmarinus officinalis. Journal of Chromatography A, 1218(47), 8480–8489. http://doi.org/10.1016/j.chroma.2011.09.073
Liu, X., Huang, X., Wang, Y., Huang, S., & Lin, X. (2013). Design and performance evaluation of ionic liquid-based microwave-assisted simultaneous extraction of kaempferol and quercetin from Chinese medicinal plants. Analytical Methods, 5(10), 2591. http://doi.org/10.1039/c3ay40202a
Liu, Y., Yang, L., Zu, Y., Zhao, C., Zhang, L., Zhang, Y., Zang, Z., & Wang, W. (2012). Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi. Food Chemistry, 135(4), 2514–2521. http://doi.org/10.1016/j.foodchem.2012.07.001
Lu, C., Wang, H., Lv, W., Ma, C., Lou, Z., Xie, J., & Liu, B. (2012). Ionic liquid-based ultrasonic / microwave-assisted extraction combined with UPLC – MS – MS for the determination of tannins in Galla chinensis. Natural Product Research, 26(19), 1841–1847.
Lu, C., Wang, H., Lv, W., Ma, C., Xu, P., Zhu, J., Xie, J., Liu B., & Zhou, Q. (2011). Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction Combined with UPLC for the Determination of Anthraquinones in Rhubarb. Chromatographia, 74(1-2), 139–144. http://doi.org/10.1007/s10337-011-2023-5
Lu, Y., Ma, W., Hu, R., Dai, X., & Pan, Y. (2008). Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. Journal of Chromatography A, 1208(1-2), 42–46. http://doi.org/10.1016/j.chroma.2008.08.070
Ma, C., Wang, S., Yang, L., Zu, Y., Yang, F., Zhao, C., Zhang L., & Zhang, Z. (2012). Ionic liquid-aqueous solution ultrasonic-assisted extraction of camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata samara. Chemical Engineering and Processing: Process Intensification, 57-58, 59–64. http://doi.org/10.1016/j.cep.2012.03.008
Ma, C., Liu, T., Yang, L., Zu, Y., Chen, X., & Zhang, L. (2011). Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from
Schisandra chinensis Baill fruits. Journal of Chromatography A, 1218(48), 8573–8580. http://doi.org/10.1016/j.chroma.2011.09.075
Ma, W., Lu, Y., Hu, R., Chen, J., Zhang, Z., & Pan, Y. (2010). Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from Lotus leaf. Talanta, 80(3), 1292–1297. http://doi.org/10.1016/j.talanta.2009.09.027
Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 373(1-2), 1–56. http://doi.org/10.1016/j.apcata.2009.10.008
Opallo, M., & Lesniewski, A. (2011). A review on electrodes modified with ionic liquids. Journal of Electroanalytical Chemistry, 656(1-2), 2–16. http://doi.org/10.1016/j.jelechem.2011.01.008
Parvulescu, V. I., & Hardacre, C. (2007). Catalysis in Ionic Liquids. Chem. Rev, 107, 2615–2665.
Payal, R. S., Bharath, R., Periyasamy, G., & Balasubramanian, S. (2012). Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: Gas phase and cluster calculations. Journal of Physical Chemistry B, 116(2), 833–840. http://doi.org/10.1021/jp207989w
Peric, B., Sierra, J., Martí, E., Cruañas, R., Garau, M.A., Arning, J., Bottin-Weber, U., & Stolte, S. (2013). (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. Journal of Hazardous Materials, 261, 99–105. http://doi.org/10.1016/j.jhazmat.2013.06.070
Petkovic, M., Ferguson, J.L., Gunaratne, H.Q.N., Ferreira, R., Leitão, M.C., Seddon, K.R., Rebelo, L.P.B., & Pereira, C.S. (2010). Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chemistry, 12(4), 643. http://doi.org/10.1039/b922247b
Pham, T.P.T., Cho, C.-W., & Yun, Y.-S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research, 44(2), 352–372. http://doi.org/10.1016/j.watres.2009.09.030
Poole, C.F., & Poole, S.K. (2011). Ionic liquid stationary phases for gas chromatography. Journal of Separation Science, 34(8), 888–900. http://doi.org/10.1002/jssc.201000724
Sarker, S.D., Latif, Z., & Gray, A.I. (2006). Natural Products Isolation (Second). Totowa, New Jersey: Humana Press.
Sarker, S.D., & Nahar, L. (2012). Natural Products Isolation. (J. M. Walker, Ed.)Humana Press (Third Edit). New York Dordrecht Heidelberg London Library: Springer. http://doi.org/10.1007/978-1-62703-239-1_1
Ventura, S.P.M., Francisca, A., Gonçalves, A.M.M., Pereira, J.L., Gonçalves, F., & Coutinho, J.A.P. (2014). Ecotoxicology and Environmental Safety Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicology and Environmental Safety, 102, 48–54. http://doi.org/10.1016/j.ecoenv.2014.01.003
Wang, S., Yang, L., Zu, Y., Zhao, C., Sun, X., Zhang, L., & Zhang, Z. (2011). Design and Performance Evaluation of Ionic-Liquids-Based Microwave-Assisted Environmentally Friendly Extraction Technique for Camptothecin and 10-Hydroxycamptothecin from Samara of Camptotheca acuminata. Industrial & Engineering Chemistry Research, 50, 13620–13627.
Wei, W., Fu, Y., Zu, Y., Wang, W., Luo, M., Zhao, C., Li, C., Zhang, L., & Wei, Z. (2012). Ionic liquid-based microwave-assisted extraction for the determination of flavonoid glycosides in pigeon pea leaves by high-performance liquid chromatography-diode array detector with pentafluorophenyl column. Journal of
Separation Science, 35(21), 2875–2883. http://doi.org/10.1002/jssc.201200473
Xu, J., Wang, W., Liang, H., Zhang, Q., & Li, Q. (2015). Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Industrial Crops & Products, 76, 487–493. http://doi.org/10.1016/j.indcrop.2015.07.025
Xu, W., Chu, K., Li, H., Zhang, Y., Zheng, H., Chen, R., & Chen, L. (2012). Ionic Liquid-Based Microwave-Assisted Extraction of Flavonoids from Bauhinia championii (Benth.) Benth. Molecules, 17(12), 14323–14335. http://doi.org/10.3390/molecules171214323
Yang, L., Ge, H., Wang, W., Zu, Y., Yang, F., Zhao, C., … Zhang, Y. (2013). Development of sample preparation method for eleutheroside B and e analysis in Acanthopanax senticosus by ionic liquids-ultrasound based extraction and high-performance liquid chromatography detection. Food Chemistry, 141(3), 2426–2433. http://doi.org/10.1016/j.foodchem.2013.05.094
Yang, L., Liu, Y., Zu, Y. gang, Zhao, C. jian, Zhang, L., Chen, X. qiang, & Zhang, Z. hua. (2011). Optimize the process of ionic liquid-based ultrasonic-assisted extraction of aesculin and aesculetin from Cortex fraxini by response surface methodology. Chemical Engineering Journal, 175(1), 539–547. http://doi.org/10.1016/j.cej.2011.09.110
Yang, L., Wang, H., Zu, Y., Zhao, C., Zhang, L., Chen, X., & Zhang, Z. (2011). Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chemical Engineering Journal, 172(2-3), 705–712. http://doi.org/10.1016/j.cej.2011.06.039
Yansheng, C., Zhida, Z., Changping, L., Qingshan, L., Peifang, Y., & Welz-Biermann, U. (2011). Microwave-assisted extraction of lactones from Ligusticum chuanxiong Hort. using protic ionic liquids. Green Chemistry, 13(3), 666. http://doi.org/10.1039/c0gc00864h
Yuan, Y., Wang, Y., Xu, R., Huang, M., & Zeng, H. (2011). Application of ionic liquids in the microwave-assisted extraction of podophyllotoxin from Chinese herbal medicine. The Analyst, 136(11), 2294. http://doi.org/10.1039/c0an00864h
Zhai, Y., Sun, S., Wang, Z., Cheng, J., Sun, Y., Wang, L., Zhang, Y., Zhang, H., & Yu, A. (2009). Microwave extraction of essential oils from dried fruits of Illicium verum Hook. F. and Cuminum cyminum L. using ionic liquid as the microwave absorption medium. Journal of Separation Science, 32(20), 3544–3549. http://doi.org/10.1002/jssc.200910204
Zhang, C., Wang, H., Malhotra, S. V, Dodge, C. J., & Francis, A. J. (2010). Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chemistry, 12(5), 851–858. http://doi.org/10.1039/b924264c
Zhang, D.-Y., Yao, X.-H., Duan, M.-H., Luo, M., Wang, W., Fu, Y.-J., Zu, Y.-G., Yao, X.-H., Efferth, T. (2013). An effective negative pressure cavitation-microwave assisted extraction for determination of phenolic compounds in P. calliantha H. Andr. The Analyst, 138(16), 4631. http://doi.org/10.1039/c3an36534d
Zhang, L., Geng, Y., Duan, W., Wang, D., Fu, M., & Wang, X. (2009). Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. Journal of Separation Science, 32(20), 3550–3554. http://doi.org/10.1002/jssc.200900413
Zhang, L., & Wang, X. (2010). Hydrophobic ionic liquid-based ultrasoundassisted extraction of magnolol and honokiol from cortex Magnoliae officinalis. Journal of Separation Science, 33(13), 2035–2038. http://doi.org/10.1002/jssc.201000076
Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghagor, K., Norulaini, N.A.N., & Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. http://doi.org/10.1016/j.jfoodeng.2013.01.014
Bogdanov, M. G., Iliev, B., & Kantlehner, W. (2009). The Residual Volume Approach II : Simple Prediction of Ionic Conductivity of Ionic Liquids. Z. Naturforsch B, 64, 756–764.
Bogdanov, M.G., Petkova, D., Hristeva, S., & Svinyarov, I. (2010). New Guanidinium-based Room-temperature Ionic Liquids . Substituent and Anion Effect on Density and Solubility in Water. Z. Naturforsch B, 65b, 37–48.
Bogdanov, M.G., Svinyarov, I., Keremedchieva, R., & Sidjimov, A. (2012). Ionic liquid-supported solid – liquid extraction of bioactive alkaloids. I . New HPLC method for quantitative determination of glaucine in Glaucium flavum. Separation and Purification Technology, 97, 221–227. http://doi.org/10.1016/j.seppur.2012.02.001
Bubalo, M.C., Radošević, K., Redovniković, I.R., Halambek, J., & Srček, V.G. (2014). A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicology and Environmental Safety, 99, 1–12. http://doi.org/10.1016/j.ecoenv.2013.10.019
Bucar, F., Wube, A., & Schmid, M. (2013). Natural product isolation – how to get from biological material to pure compounds. Natural Product Reports, 30(4), 525. http://doi.org/10.1039/c3np20106f
Cao, X., Ye, X., Lu, Y., Yu, Y., & Mo, W. (2009). Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Analytica Chimica Acta, 640(1-2), 47–51. http://doi.org/10.1016/j.aca.2009.03.029
Chemat, F., & Vian, M. A. (2014). Green Chemistry and Sustainable Technology: Alternative Solvents for Natural Products Extraction. Heildelberg, New York, Dordrecht, London: Springer US.
Choi, S.A., Lee, J.S., Oh, Y.K., Jeong, M.J., Kim, S.W., & Park, J.Y. (2014). Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. Algal Research, 3(1), 44–48. http://doi.org/10.1016/j.algal.2013.11.013
Choi, S., Lee, J., Oh, Y., Jeong, M., Wook, S., & Park, J. (2014). Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. ALGAL, 3, 44–48. http://doi.org/10.1016/j.algal.2013.11.013
Claudio, A.F.M., Ferreira, A.M., Freire, M.G., & Coutinho, J.A.P. (2010). Enhanced Extraction of Caffeine from Guarana Seeds using Aqueous Solutions of Ionic Liquids. Green Chem., 12(9), 1481–1675. Retrieved from http://xlink.rsc.org/?DOI=C2GC36682G
Cragg, G.M., & Newman, D.J. (2013). Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta, 1830, 3670–3695.
Ding, X., Li, L., Wang, Y., Chen, J., Huang, Y., & Xu, K. (2014). Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix Peucedani. Journal of Separation Science, 37(23), 3539–3547. http://doi.org/10.1002/jssc.201400828
Du, F.Y., Xiao, X.H., & Li, G.K. (2007). Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni cuspidati. Journal of Chromatography A, 1140(1-2), 56–62. http://doi.org/10.1016/j.chroma.2006.11.049
Du, F.Y., Xiao, X.H., & Li, G.K. (2011). Ionic liquid aqueous solvent-based microwave-assisted hydrolysis for the extraction and HPLC determination of myricetin and quercetin from Myrica rubra leaves. Biomedical Chromatography, 25(4), 472–478. http://doi.org/10.1002/bmc.1470
Dupont, J. (2004). On the Solid, Liquid and Solution Structural Organization of Imidazolium Ionic Liquids. J.Braz.Chem.Soc, 15(3), 341–350.
Espino, M., Fernández, M.D.L.Á., Gomez, F.J.V, & Silva, M.F. (2015). Natural Designer Solvents for Greening Analytical Chemistry. Trends in Analytical Chemistry. http://doi.org/10.1016/j.trac.2015.11.006
Fan, J., Cao, J., Zhang, X., Huang, J., Kong, T., & Tong, S. (2012). Optimization of ionic liquid based ultrasonic assisted extraction of puerarin from Radix Puerariae lobatae by response surface methodology. Food Chemistry, 135(4), 2299–2306. http://doi.org/10.1016/j.foodchem.2012.07.038
Garcia, H., Ferreira, R., Petkovic, M., Ferguson, J.L., Leitão, M.C., Gunaratne, H.Q.N., Seddon, K.R., Rebelo, L.P.N., & Pereira, C.S. (2010). Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chemistry, 12(3), 367. http://doi.org/10.1039/b922553f
Greaves, T.L., & Drummond, C.J. (2013). Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids. Chem. Soc. Rev., 42(3), 1096–1120. http://doi.org/10.1039/C2CS35339C
Gross, A.S., Bell, A.T., & Chu, J.-W. (2012). Thermodynamics of Cellulose Solvation in Water and in the Ionic Liquid 1-butyl-3-methylimidazolim chloride. Physical Chemistry Chemical Physics, 14(23), 8425. http://doi.org/10.1039/c2cp40417f
Guolin, H., Jeffrey, S., Kai, Z., & Xiaolan, H. (2012). Application of ionic liquids in the microwave-assisted extraction of pectin from lemon peels. Journal of Analytical Methods in Chemistry, 1(1), 1012–1018. http://doi.org/10.1155/2012/302059
Hallett, J.P., & Welton, T. (2011). Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chemical Reviews, 111(5), 3508–3576. http://doi.org/10.1021/cr1003248
Han, D., & Row, K.H. (2011). Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. Journal of the Science of Food and Agriculture, 91(15), 2888–2892. http://doi.org/10.1002/jsfa.4553
Hanani, E. (2014). Analisis Fitokimia. Jakarta: Penerbit Buku Keokteran, EGC.
Harborne, J.B. (1987). Metode Fitokimia. Bandung: Penerbit ITB.
Ho, T.D., Zhang, C., Hantao, L.W., & Anderson, J.L. (2013). Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives. Analytical Chemistry.
Jacquemin, J., Husson, P., Padua, A.A.H., & Majer, V. (2006). Density and viscosity of several pure and water-saturated ionic liquids. Green Chem., 8(2), 172–180. http://doi.org/10.1039/B513231B
Jessop, P.G., Jessop, D.A., Fu, D., & Phan, L. (2012). Solvatochromic parameters for solvents of interest in green chemistry. Green Chemistry, 14(5), 1245. http://doi.org/10.1039/c2gc16670d
Khoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(3), 2328–2375. http://doi.org/10.3390/molecules18022328
Landry, T.D., Brooks, K., Poche, D., & Woolhiser, M. (2005). Acute toxicity profile of 1-butyl-3-methylimidazolium chloride. Bulletin of Environmental Contamination and Toxicology, 74(3), 559–565. http://doi.org/10.1007/s00128-005-0620-4
Li, Z., Li, C., Chi, Y., Wang, A., Zhang, Z., Li, H., & Liu, Q. (2012). Extraction Process of Dibenzothiophene with New Distillable Amine- Based Protic Ionic Liquids. Energy & Fules, 26, 3723–3727.
Liu, T., Sui, X., Zhang, R., Yang, L., Zu, Y., & Zhang, L. (2011). Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid , rosmarinic acid and essential oil from Rosmarinus officinalis. Journal of Chromatography A, 1218(47), 8480–8489. http://doi.org/10.1016/j.chroma.2011.09.073
Liu, X., Huang, X., Wang, Y., Huang, S., & Lin, X. (2013). Design and performance evaluation of ionic liquid-based microwave-assisted simultaneous extraction of kaempferol and quercetin from Chinese medicinal plants. Analytical Methods, 5(10), 2591. http://doi.org/10.1039/c3ay40202a
Liu, Y., Yang, L., Zu, Y., Zhao, C., Zhang, L., Zhang, Y., Zang, Z., & Wang, W. (2012). Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi. Food Chemistry, 135(4), 2514–2521. http://doi.org/10.1016/j.foodchem.2012.07.001
Lu, C., Wang, H., Lv, W., Ma, C., Lou, Z., Xie, J., & Liu, B. (2012). Ionic liquid-based ultrasonic / microwave-assisted extraction combined with UPLC – MS – MS for the determination of tannins in Galla chinensis. Natural Product Research, 26(19), 1841–1847.
Lu, C., Wang, H., Lv, W., Ma, C., Xu, P., Zhu, J., Xie, J., Liu B., & Zhou, Q. (2011). Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction Combined with UPLC for the Determination of Anthraquinones in Rhubarb. Chromatographia, 74(1-2), 139–144. http://doi.org/10.1007/s10337-011-2023-5
Lu, Y., Ma, W., Hu, R., Dai, X., & Pan, Y. (2008). Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. Journal of Chromatography A, 1208(1-2), 42–46. http://doi.org/10.1016/j.chroma.2008.08.070
Ma, C., Wang, S., Yang, L., Zu, Y., Yang, F., Zhao, C., Zhang L., & Zhang, Z. (2012). Ionic liquid-aqueous solution ultrasonic-assisted extraction of camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata samara. Chemical Engineering and Processing: Process Intensification, 57-58, 59–64. http://doi.org/10.1016/j.cep.2012.03.008
Ma, C., Liu, T., Yang, L., Zu, Y., Chen, X., & Zhang, L. (2011). Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits. Journal of Chromatography A, 1218(48), 8573–8580. http://doi.org/10.1016/j.chroma.2011.09.075
Ma, W., Lu, Y., Hu, R., Chen, J., Zhang, Z., & Pan, Y. (2010). Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from Lotus leaf. Talanta, 80(3), 1292–1297. http://doi.org/10.1016/j.talanta.2009.09.027
Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 373(1-2), 1–56. http://doi.org/10.1016/j.apcata.2009.10.008
Opallo, M., & Lesniewski, A. (2011). A review on electrodes modified with ionic liquids. Journal of Electroanalytical Chemistry, 656(1-2), 2–16. http://doi.org/10.1016/j.jelechem.2011.01.008
Parvulescu, V. I., & Hardacre, C. (2007). Catalysis in Ionic Liquids. Chem. Rev, 107, 2615–2665.
Payal, R. S., Bharath, R., Periyasamy, G., & Balasubramanian, S. (2012). Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: Gas phase and cluster calculations. Journal of Physical Chemistry B, 116(2), 833–840. http://doi.org/10.1021/jp207989w
Peric, B., Sierra, J., Martí, E., Cruañas, R., Garau, M.A., Arning, J., Bottin-Weber, U., & Stolte, S. (2013). (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. Journal of Hazardous Materials, 261, 99–105. http://doi.org/10.1016/j.jhazmat.2013.06.070
Petkovic, M., Ferguson, J.L., Gunaratne, H.Q.N., Ferreira, R., Leitão, M.C., Seddon, K.R., Rebelo, L.P.B., & Pereira, C.S. (2010). Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chemistry, 12(4), 643. http://doi.org/10.1039/b922247b
Pham, T.P.T., Cho, C.-W., & Yun, Y.-S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research, 44(2), 352–372. http://doi.org/10.1016/j.watres.2009.09.030
Poole, C.F., & Poole, S.K. (2011). Ionic liquid stationary phases for gas chromatography. Journal of Separation Science, 34(8), 888–900. http://doi.org/10.1002/jssc.201000724
Sarker, S.D., Latif, Z., & Gray, A.I. (2006). Natural Products Isolation (Second). Totowa, New Jersey: Humana Press.
Sarker, S.D., & Nahar, L. (2012). Natural Products Isolation. (J. M. Walker, Ed.)Humana Press (Third Edit). New York Dordrecht Heidelberg London Library: Springer. http://doi.org/10.1007/978-1-62703-239-1_1
Ventura, S.P.M., Francisca, A., Gonçalves, A.M.M., Pereira, J.L., Gonçalves, F., & Coutinho, J.A.P. (2014). Ecotoxicology and Environmental Safety Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicology and Environmental Safety, 102, 48–54. http://doi.org/10.1016/j.ecoenv.2014.01.003
Wang, S., Yang, L., Zu, Y., Zhao, C., Sun, X., Zhang, L., & Zhang, Z. (2011). Design and Performance Evaluation of Ionic-Liquids-Based Microwave-Assisted Environmentally Friendly Extraction Technique for Camptothecin and 10-Hydroxycamptothecin from Samara of Camptotheca acuminata. Industrial & Engineering Chemistry Research, 50, 13620–13627.
Wei, W., Fu, Y., Zu, Y., Wang, W., Luo, M., Zhao, C., Li, C., Zhang, L., & Wei, Z. (2012). Ionic liquid-based microwave-assisted extraction for the determination of flavonoid glycosides in pigeon pea leaves by high-performance liquid chromatography-diode array detector with pentafluorophenyl column. Journal of Separation Science, 35(21), 2875–2883. http://doi.org/10.1002/jssc.201200473
Xu, J., Wang, W., Liang, H., Zhang, Q., & Li, Q. (2015). Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Industrial Crops & Products, 76, 487–493. http://doi.org/10.1016/j.indcrop.2015.07.025
Xu, W., Chu, K., Li, H., Zhang, Y., Zheng, H., Chen, R., & Chen, L. (2012). Ionic Liquid-Based Microwave-Assisted Extraction of Flavonoids from Bauhinia championii (Benth.) Benth. Molecules, 17(12), 14323–14335. http://doi.org/10.3390/molecules171214323
Yang, L., Ge, H., Wang, W., Zu, Y., Yang, F., Zhao, C., … Zhang, Y. (2013). Development of sample preparation method for eleutheroside B and e analysis in Acanthopanax senticosus by ionic liquids-ultrasound based extraction and high-performance liquid chromatography detection. Food Chemistry, 141(3), 2426–2433. http://doi.org/10.1016/j.foodchem.2013.05.094
Yang, L., Liu, Y., Zu, Y. gang, Zhao, C. jian, Zhang, L., Chen, X. qiang, & Zhang, Z. hua. (2011). Optimize the process of ionic liquid-based ultrasonic-assisted extraction of aesculin and aesculetin from Cortex fraxini by response surface methodology. Chemical Engineering Journal, 175(1), 539–547. http://doi.org/10.1016/j.cej.2011.09.110
Yang, L., Wang, H., Zu, Y., Zhao, C., Zhang, L., Chen, X., & Zhang, Z. (2011). Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chemical Engineering Journal, 172(2-3), 705–712. http://doi.org/10.1016/j.cej.2011.06.039
Yansheng, C., Zhida, Z., Changping, L., Qingshan, L., Peifang, Y., & Welz-Biermann, U. (2011). Microwave-assisted extraction of lactones from Ligusticum chuanxiong Hort. using protic ionic liquids. Green Chemistry, 13(3), 666. http://doi.org/10.1039/c0gc00864h
Yuan, Y., Wang, Y., Xu, R., Huang, M., & Zeng, H. (2011). Application of ionic liquids in the microwave-assisted extraction of podophyllotoxin from Chinese herbal medicine. The Analyst, 136(11), 2294. http://doi.org/10.1039/c0an00864h
Zhai, Y., Sun, S., Wang, Z., Cheng, J., Sun, Y., Wang, L., Zhang, Y., Zhang, H., & Yu, A. (2009). Microwave extraction of essential oils from dried fruits of Illicium verum Hook. F. and Cuminum cyminum L. using ionic liquid as the microwave absorption medium. Journal of Separation Science, 32(20), 3544–3549. http://doi.org/10.1002/jssc.200910204
Zhang, C., Wang, H., Malhotra, S. V, Dodge, C. J., & Francis, A. J. (2010). Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chemistry, 12(5), 851–858. http://doi.org/10.1039/b924264c
Zhang, D.-Y., Yao, X.-H., Duan, M.-H., Luo, M., Wang, W., Fu, Y.-J., Zu, Y.-G., Yao, X.-H., Efferth, T. (2013). An effective negative pressure cavitation-microwave assisted extraction for determination of phenolic compounds in P. calliantha H. Andr. The Analyst, 138(16), 4631. http://doi.org/10.1039/c3an36534d
Zhang, L., Geng, Y., Duan, W., Wang, D., Fu, M., & Wang, X. (2009). Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. Journal of Separation Science, 32(20), 3550–3554. http://doi.org/10.1002/jssc.200900413
Zhang, L., & Wang, X. (2010). Hydrophobic ionic liquid-based ultrasoundassisted extraction of magnolol and honokiol from cortex Magnoliae officinalis. Journal of Separation Science, 33(13), 2035–2038. http://doi.org/10.1002/jssc.201000076
Zhang, Q., Zhao, S., Chen, J., & Zhang, L. (2015). Application of ionic liquid-based microwave-assisted extraction of flavonoids from Scutellaria baicalensis Georgi. Journal of Chromatography B, 1002, 411–417. http://doi.org/10.1016/j.jchromb.2015.08.021
Zhang, Y., Liu, Z., Li, Y., & Chi, R. (2014). Optimization of Ionic liquid-based Microwave-assisted Extraction of Isoflavones from Radix Puerariae by Response Surface Methodology. Separation and Purification Technology. http://doi.org/10.1016/j.seppur.2014.03.022
Published
2016-04-25
How to Cite
Ahmad, I., & Mun’im, A. (2016). Penerapan Ionic Liquid (ILs) Sebagai Pelarut Alternatif Untuk Mengekstraksi Komponen Aktif Dari Tumbuhan Obat: Review. Proceeding of Mulawarman Pharmaceuticals Conferences, 3(1), 35-52. https://doi.org/10.25026/mpc.v3i1.65